ERIKS Sealing Technology
Engineered Seals for Defence & Aerospace
Leader in Sealing Technology

It is not our 80 year heritage in supplying seals into the UK’s Defence and Aerospace industries, but our cutting edge materials and design capabilities combined with our advanced supply chain solutions that makes ERIKS Sealing Technology your partner of choice for seals and polymers products.

The UK boasts the second largest defence market in the world. Despite trends to utilise commercial grade product whenever appropriate, the majority of defence applications demand specific material and product qualifications. By offering impartial technical solutions and partnering with the most appropriate UK and US based manufacturing partners for specific applications, ERIKS Sealing Technology is the ideal partner to both impartially co-engineer the right solution for your application and manage your production and legacy sealing supply chains.

Our Materials Technology Centre offers you access to fundamental understanding of polymer technology, helping you identify the appropriate material specification for your application to maximise both performance and life. Our experts can also assist you to overcome obsolescence problems, by identifying the current equivalent standard or creating custom specifications to ensure the consistent function of your equipment. Our Design and Test teams draw upon extensive qualifications, experience and analytical techniques to provide you design validation and verification reports that assist you to correctly specify design intent with industry standard safety factors. We employ comprehensive configuration management procedures to ensure that any change to fit, form or function drives change to part numbering, maintaining source control.

Our supply chain expertise drives compliance to NATO Stock Number (NSN), SAE or UK MOD specifications.

Our compliant products are supported by advanced technical and logistics services that form the link between our know-how and your delivery.

Stock Availability

As one of the world’s largest stockholders of sealing and associated products, you are assured of the highest levels of availability to keep your asset operational.

Our expertise will also help you select the correct item from our range or specify the optimal customised solution.

Customer stocking programmes are available to maintain continuity and supply.

- Dedicated technical support and customer service staff
- Field based Sealing Technology application engineers and specialists
- Skilled research and development engineers
- 24 hour UK call out service available
- Multi-national locations to support our global customer network

Design Assistance

Custom Design Capabilities

- 3D CAD to capture design intent
- Change control and configuration management

Finite Element Analysis (FEA)

Advanced mechanical simulation using non-linear finite element analysis helps our customers:

- Be first to market
- Identify and mitigate against failure modes, maximising operating life
- Confirm both fit and function
- Assists in tailoring design for demanding, bespoke applications

Material Technology Centre

Our Materials Technology Centre ensures our high quality standards are maintained and develops new compounds and technical solutions for your applications.

Elastomers

Elastomers used in sealing are often described as compounds, meaning that they are a mixture of ingredients manufactured under specific conditions.

Compounds typically comprise:

- Polymer backbone – a long chain of molecules made up of one or more monomeric units, this governs the basic thermal, chemical and physical properties of a compound. ISO/ASTM classifications define families of elastomer such as NBR, FKM etc.
- Cross-link – short chains of molecules linking polymer backbone
- Fillers – solid particles that tailor physical properties
Common Chemical Compatibilities of Materials

Elastomers

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrile (NBR)</td>
<td>NBR is a copolymer of two monomers; acrylonitrile (ACN) and butadiene. The properties of this elastomer are ruled by the ACN content: High Nitrile: >45%, Medium Nitrile: 30 – 45% and Low Nitrile: <30%. The higher the ACN content, the better the hydrocarbon oil resistance. With lower ACN content, the material offers better flexibility at low temperatures.</td>
</tr>
<tr>
<td>Hydrogenated Nitrile (HNBR)</td>
<td>The properties of HNBRs are dependent upon the acrylonitrile content and the degree of hydrogenation of the butadiene copolymer. It has better hydrocarbon oil and chemical resistance than nitrile rubber and can withstand much higher temperatures. Physical properties are also excellent.</td>
</tr>
<tr>
<td>Hydrocarbon Rubber (FPM)</td>
<td>FKM offers excellent resistance to mineral oils and greases, aliphatic, aromatic and some chlorinated hydrocarbons, fuels, silicone oils and greases. However FKM shows poor resistance to ethers, esters and amines. FKM are available as a copolymer (two monomers), terpolymer (three monomers) or as a tetrapolymer (four monomers). Each type determines both fluoro content and chemical structure which in turn significantly impact the chemical resistance and temperature performance of the polymer.</td>
</tr>
<tr>
<td>Perfluoroelastomer (FFKM)</td>
<td>FFKM has a fully fluorinated polymer backbone resulting in fluoro content of over 71%. As all of the bonds on the backbone are carbon-fluorine then FFKM materials offer the ultimate thermo-chemical resistance shown by good long-term, high-temperature compression-set resistance.</td>
</tr>
<tr>
<td>Fluorosilicone (FVMQ) / Silicone (VMQ)</td>
<td>Silicone elastomers are commonly used for extreme temperature ranges (-90°C to +230°C) and offer good low temperature flexibility. They also offer good resistance to ultra-violet radiation (UV), oxygen and ozone. Silicone is best suited to non-dynamic applications, as this elastomer type possesses relatively low tear and mechanical characteristics.</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>Polyurethane demonstrates excellent resistance to weathering and oxidation. They resist hydrocarbon fuels and mineral oils; however some grades degrade (Hydrolyze) in hot water. Polyurethane offers some of the best resistance to abrasion; therefore it is often specified for use in reciprocating seals.</td>
</tr>
<tr>
<td>Polyether ketone (PEEK)</td>
<td>Polyether ketone (PEEK) is an organic, semi-crystalline, thermoplastic polymer used in demanding engineering applications. PEEK offers excellent mechanical properties, which are maintained at high temperatures. Its resistance to thermal attack and its dimensional stability at high temperatures, along with broad chemical resistance, allows PEEK to be used in applications such as bearings, sealing back-ups rings etc. PEEK is available as non-filled (virgin) grades, and as various filled grades which modify its physical and mechanical characteristics.</td>
</tr>
<tr>
<td>Ethylene Propylene Rubbers (EPR, EPDM)</td>
<td>Ethylene Propylene is available as a copolymer (EPR) or as a terpolymer (EPDM). These elastomers have excellent resistance to heat, water, phosphate esters, steam, weathering and ozone. Ethylene Propylene based compounds are not recommended for use with mineral or phosphate esters, petroleum based fluids.</td>
</tr>
<tr>
<td>Polytetrafluoroethylene (PTFE)</td>
<td>PTFE is a synthetic, thermoplastic polymer which offers exceptional chemical resistance over a wide range of temperatures and offers extremely low levels of friction. PTFE lacks elasticity which prevents its use as an elastomeric type sealing ring, however it is commonly used for anti-suction as a back-up ring and for non-stick requirements. Owing to its low friction and excellent chemical resistance, it is also commonly used for applications such as bearings, gears, rotary seals etc. Non-Filled (virgin) grades are stable up to +260°C and are quite flexible and resistant to breaking under tensile and compressive stresses. Modified backbone grades of PTFE are available which offer higher temperature (+315°C) and deformation resistance. PTFE is also available with fillers to enhance its physical characteristics.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Media</th>
<th>EPDM</th>
<th>FKM</th>
<th>HNBR</th>
<th>FPM (A)</th>
<th>FPM (GT)</th>
<th>VMQ</th>
<th>FVMQ</th>
<th>PTFE</th>
<th>PEEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water / coolant</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerosene</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liquidified natural gas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Silica</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alkanes</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acetone</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Water / coolant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kerosene</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liquidified natural gas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Silica</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alkanes</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acetone</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Water / coolant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kerosene</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liquidified natural gas</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alcohol</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Silica</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Alkanes</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Acetone</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

KEY: 1 = Excellent 2 = Good 3 = Poor 4 = Not recommended

For Elastomer Seals in Aircraft Engine Oil, Fuel and Hydraulic Systems

Material information can also be found on our Chemical Compatibility tool:
http://oring-groove-wizard.eriks.co.uk/ChemicalCompatibility.aspx
The majority of designs used in Defence and Aerospace applications have commercially available equivalents. The thermo-chemical, mechanical, envelope or weight saving demands placed upon components used in Defence and Aerospace applications dictate the use of specific materials, compliant to specialist industry standards.

ISIS Codification
NATO maintains and codifies items into one central supply-chain database, in the UK this is referred to as ISIS. The supply location of any product is given a CAGE code unique to that facility. Each product is allocated a Nato Stock Number (NSN), comprising a commodity stem and a National Item Identification Number (NIIN) suffix. Against each NSN the compliant suppliers and the suppliers’ part numbers are listed.

Foreign and Commonwealth Office
Up-to-date information regarding the export regulations for military equipment from the UK is published by the Foreign and Commonwealth office at fco.gov.uk. The US equivalent advice is contained within the International Trade of Arms regulations, governed by the US Department of State. Although some regard dual-use catalogue items not to be subject to ITAR regulations, the product references detailed here-in suggest possible military use and we recommend professional advice be sought regarding regulatory compliance.

Comparing Compliance
Applications

<table>
<thead>
<tr>
<th>Components</th>
<th>Requirements</th>
<th>Seal Profiles</th>
<th>Sealing Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic systems</td>
<td>High pressure, Mineral (Red) oils</td>
<td>Rod seals, Piston seals, SE seals, O-rings</td>
<td>NBR, EPDM, FKM, HNBR, VITON, PTFE, PEEK</td>
</tr>
<tr>
<td>Primary flight control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary flight control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utility actuation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBHA’s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stowing systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oilo-pneumatic damping systems</td>
<td>High pressure, Mineral (Red) oils</td>
<td>Rod seals, Piston seals, SE seals, O-rings</td>
<td>NBR, EPDM, FKM, HNBR, VITON, PTFE, PEEK</td>
</tr>
<tr>
<td>Engine Systems</td>
<td>O-rings, Rod seals, Piston seals, SE seals, Fire seals</td>
<td>Grommets, Special mouldings, Extrusions, O-rings, Match seals, Void filling seals, Machined shapes</td>
<td>FKM, PFKM, PTFE, PEEK</td>
</tr>
<tr>
<td>Static sealing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel/air systems (VAVBNA / VIGVA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Systems</td>
<td>O-rings, Rod seals, Piston seals, SE seals, Fire seals</td>
<td>Grommets, Special mouldings, Extrusions, O-rings, Match seals, Void filling seals, Machined shapes</td>
<td>FKM, PFKM, PTFE, PEEK</td>
</tr>
<tr>
<td>Cabin</td>
<td>O-rings, Rod seals, Piston seals, SE seals, Fire seals</td>
<td>Grommets, Special mouldings, Extrusions, O-rings, Match seals, Void filling seals, Machined shapes</td>
<td>FKM, PFKM, PTFE, PEEK</td>
</tr>
</tbody>
</table>

Aerospace
Safety critical applications require appropriate quality assurance, dimensional and materials standards to come together affording the design authority confidence to specify seals correctly and in a controlled and repeatable manner. Although prime contractors employ their own standards, four dominant systems of regulatory standards are typically used: SAE (US), AIA (US), DTD (UK) and NFL (Fr).

Governing UK Bodies and Standards
UK Defence Procurement Agency
Society of British Aerospace Companies (SBAC)
SBAC TS49 – Manufacturing and inspection
BS F69 – Packaging and identification

Governing US Bodies and Standards
Society of Automotive Engineers (www.sae.org)
Aerospace Industries Association (www.global.ihs.com)
US Department of Defence
Performance Review Institute QPL
AS9100 – Aerospace and Defence Quality Management System Approval
AS7115 – Additional NADCAP

requirements for processing elastomers including ‘special processed’, i.e. those that do not visibly alter the components
ARP 5613 – Storage and shelf life
AS568 Revision B – Toroidal O-ring dimensions and tolerances
AS4716 – Dimensions and tolerances for O-ring / Seal grooves for dynamic applications
AS5857 – Dimensions and tolerances for O-ring / Seal grooves for static applications

The EXOSTAR e-Trading platform is commonly used within Defence and Aerospace, however ERIKS support numerous e-business platforms including, but not limited to X12, BASDA, EDIFACT and iDoc.
UK Aerospace Standards

EPOXI
- **Low Temperature NBR Elastomer**
 - BS M48 DTD 5606A DTD 5594
 - Elastomeric toroidal sealing rings (O-rings)
 - fluid resistant ethylene-propylene type 70
 - Resistant -45 to +150°C

FN8
- **Fluorocarbon, Oil-And-Fuel-Resistant Elastomer**
 - BS M48 DTD 5606A DTD 5594
 - Elastomeric toroidal sealing rings (O-rings)
 - butadiene-acrylonitrile type (fuel and synthetic oil resistant) 80

NBR
- **Fluorocarbon, High Temperature, Fluid Resistant, Low Compression Set**
 - BS M48 DTD 5613A DTD 5612A
 - Elastomeric toroidal sealing rings, (O-rings) low compression set fluorocarbon type 50

PVM
- **Fluorocarbon, High Temperature, Fluid Resistant, Low Compression Set**
 - BS M48 DTD 5613A DTD 5612A
 - Elastomeric toroidal sealing rings, (O-rings) low compression set fluorocarbon type 70

US Aerospace Standards

A388 Table
- **EPOXI**
 - Ethylene-Propylene (EPDM)
 - Perfluoroether elastomer
- **FN8**
 - Fluorocarbon elastomer
- **NBR**
 - Fluorocarbon elastomer
- **PVM**
 - Fluorocarbon elastomer
- **VRG**
 - Fluorocarbon elastomer

ASTM Table
- **EPOXI**
 - Ethylene-Propylene (EPDM)
 - Perfluoroether elastomer
- **FN8**
 - Fluorocarbon elastomer
- **NBR**
 - Fluorocarbon elastomer
- **PVM**
 - Fluorocarbon elastomer
- **VRG**
 - Fluorocarbon elastomer

NOTE: The 0-ring gap numbering format listed above should be used when ordering to ensure compliance to material's dimensional and quality assurance standards. Parameter numbering specifying specific compound numbers should be used to adhere to ERRS/Sealing Technology quality assurance standards with increased source change control.
Land Systems

The mechanical extremes placed upon fighting vehicles and large guns, combined with strict weight limitations conspire to create extreme operating environments that demand high performance seals that are vital for effective function of mission critical equipment.

Naval

DEF STAN 02-337

UK MOD Defence Standard DEF STAN 02-337 comprises three parts:

PART 1

Requirements for Elastic Toroidal Sealing Rings (‘O’ Rings) Part 1 General and Surface Finish Standards Relative to Manufacturer-Issue 1: 04/00; Incorporating NES 337 Category 2; Issue 2: 07/97

PART 2

Requirements for Elastic Toroidal Sealing Rings (‘O’ Rings) Part 2 List of Preferred Elastic Toroidal Sealing Rings (‘O’ Rings)-Issue 1: 04/00; Incorporating NES 337 Category 2; Issue 2: 07/97

PART 3

Requirements for Elastic Toroidal Sealing Rings (‘O’ Rings) Part 3 Anti-Extrusion Rings (Back Up Rings)-Issue 1: 04/00; Incorporating NES 337 Category 2; Issue 2: 07/97

Previously referred to as NES 337 elastomers, grades include:

- **FC70 – Fluorocarbon rubber (FKM) 70 °IRHD**
- **FC90 – Fluorocarbon rubber (FKM) 90 °IRHD**
- **HN80 – High Nitrile (NBR) 80 °IRHD**
- **HN90 – High Nitrile (NBR) 90 °IRHD**
- **HN70 – High Nitrile (NBR) 70 °IRHD**
- **HN60 – Medium Nitrile (NBR) 60 °IRHD**
- **MN80 – Medium Nitrile (NBR) 80 °IRHD**
- **MN70 – Medium Nitrile (NBR) 70 °IRHD**
- **MN60 – Medium Nitrile (NBR) 60 °IRHD**
- **MN90 – Medium Nitrile (NBR) 90 °IRHD**

NES337 compliant O-rings are typically supplied against NATO Stock Numbers (NSNs).

Pressurised Water Reactors

Pressurised water reactors and other aqueous environments demand low elutables to maximise life. Halogens may cause stress corrosion cracking to metals, whilst mobile and low melting point transition metals may result in embrittlement. Our low elutable materials are able to meet the needs of all standards to which they have been tested. Naturally these seals can be supplied with comprehensive testing, certification, and packaged to customer specific requirements.
Profile Description

T-Seal

Typically used in reciprocating and high pressure static applications, T-Seals comprise a single T-section elastomeric energiser and two thermoplastic back-up rings. Available in both piston and rod geometries, T-Seals can retro-fit into most standard O-ring grooves designed for widths to accommodate 0, 1 or 2 back-ups.

Single Acting Cap Seal

Single Acting Cap Seal: A self-actuating, pressure venting, extrusion resistant seal that combines low breakout and running friction with minimal leakage. The seal is constructed of a premium grade PTFE sealing element and an elastomer energiser. The Single Acting Cap Seal is a reliable, compact, design with a long service life and is available in both rod and piston type geometries to retrofit into ISO7425-2 grooves.

Energised Lip Seal

Energised Lip Seal: A symmetrical seal optimised for heavy duty reciprocating applications with unidirectional pressure. The Energised Lip Seal comprises a high modulus, highly durable, wear resistant, elastomeric jacket, energised by a low modulus, split O-ring. The jacket provides superior sealing efficiency and abrasion resistance, whilst the O-ring both transmits system pressure to the contact surfaces and ensures energisation of the seal lips under low pressure or low temperature.

SE Seal

The Spring Energised (SE), is a pressure activated seal, with assisted energisation provided by corrosion-resistant metal spring. When the seal is in situ, the spring is under compression and applies force to seal’s sealing lips. This, augmented by the system pressure, creates a tight barrier to prevent gas or fluids from leaking. SE Seals can operate down to cryogenic temperature and up to +200°C.

Weston Mechanical

If speed, pressure and the working environment are extreme then a Weston Mechanical bespoke sealing arrangement could be the solution.

Split Seals

Our GS & TX split seals are used in applications where installation and replacement mandates that the surrounding hardware cannot be fully disassembled.
Quality Assurance
ERIKS utilise both AS9100 and NADCAP AS7115 qualified supply chains as required by our customer specifications to provide quality assured manufacture, including that of special processes.

Quality control is delivered through the use of high volume non-contact vision systems, combined touch / optical CMMs and analytical laboratory equipment e.g. FTIR, TGA, DSC backed up by ISO17025 facilities and procedures.

Our commitment to quality, combined with our advanced logistical services provides our customers with true competitive advantage.

Kitting, Bagging and Cleaning
ERIKS Sealing Technology can provide bespoke kits and aftermarket bagging of individual parts to service your industry requirements.

Our specially tailored kits are assembled and packaged with clearly marked part numbering and can be supplied with our own brand, or alternatively customer specific branding. We are able to offer kits that include a variety of our core product, ranging from Rotary Seals and O-rings to Hydraulic Seals, Washers and Gaskets.

We can also offer a number of cleaning services for use in clean-room applications or low elutable aqueous environments.

Other Brochures in this Series
- Chemical Process Industry
- Oil and Gas Applications
- Agriculture and Earth Moving Applications
- Automotive and Transport Applications
- Heavy Industry
- Utilities

Viton® Extreme is a trademark of DuPont.
Aflas® is a trademark of Asahi Glass.
AeroShell® is a registered trademark of Shell Oil Company.
HyJet® is a registered trademark of Exxon Corporation.
Skydrol® is a registered trademark of Solutia Inc.
ERIKS Sealing Technology

ERIKS Sealing Technology offers a comprehensive range of high performance sealing products, supported by a world-class technical and logistical service to deliver the right seal on time to your critical applications.